Changes in spinal cord architecture after brachial plexus injury in the newborn.

نویسندگان

  • Klaus J Korak
  • Siu Lin Tam
  • Tessa Gordon
  • Manfred Frey
  • Oskar C Aszmann
چکیده

Obstetric brachial plexus palsy is a devastating birth injury. While many children recover spontaneously, 20-25% are left with a permanent impairment of the affected limb. So far, concepts of pathology and recovery have focused on the injury of the peripheral nerve. Proximal nerve injury at birth, however, leads to massive injury-induced motoneuron loss in corresponding motoneuron pools and therefore limits the extent of functional recovery. In the present study, the role of spinal cord plasticity after injury and recovery from obstetric brachial plexus lesions was investigated. A selective injury to spinal roots C5 and C6 was induced in newborn Sprague-Dawley rats, leading to motoneuron loss in corresponding motoneuron pools. Recovery of extremity function was evaluated with different behavioural paradigms. Permanent changes of adjacent motoneuron pools were quantitatively evaluated by retrograde tracing and functional muscle testing. We report that the adjacent C7 motoneuron contribution to biceps muscle innervation increased four-fold after upper trunk lesions in newborns, thus compensating for the injury-induced motoneuron loss. These results indicate that, in obstetric brachial plexus palsy, changes in spinal cord architecture are an integral part not only of primary pathology but also of the subsequent recovery process. While present treatment is directed towards the restoration of neural continuity, future treatment strategies must recognize and take advantage of CNS participation in the injury and recovery process.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Penile erectile dysfunction after brachial plexus root avulsion injury in rats

Our previous studies have demonstrated that some male patients suffering from brachial plexus injury, particularly brachial plexus root avulsion, show erectile dysfunction to varying degrees. However, the underlying mechanism remains poorly understood. In this study, we evaluated the erectile function after establishing brachial plexus root avulsion models with or without spinal cord injury in ...

متن کامل

Morphological changes in the brachial enlargement of the spinal cord in offspring of diabetic rat

This study was conducted to evaluate the effects of maternal diabetes on fetal spinal structure, especiallyin brachial enlargement. Sixteen adult female rats were divided into two groups. Diabetes was induced in one group by alloxan agent. Both groups became pregnant by natural matting. On days 7, 14, 21 and 28 after birth, the brachial enlargement of the spinal cord was collected from offsprin...

متن کامل

Why does the central nervous system not regenerate after injury?

A major problem for neuroscientists and clinicians is why the central nervous system shows ineffective regeneration after injury. Injured peripheral nerve fibers reform their connections, whereas those in injured spinal cord never re-grow. Insights into the mechanisms for repair and restoration of function after spinal cord injury have been obtained by experiments showing that injured nerve cel...

متن کامل

Valproic acid protects neurons and promotes neuronal regeneration after brachial plexus avulsion

Valproic acid has been shown to exert neuroprotective effects and promote neurite outgrowth in several peripheral nerve injury models. However, whether valproic acid can exert its beneficial effect on neurons after brachial plexus avulsion injury is currently unknown. In this study, brachial plexus root avulsion models, established in Wistar rats, were administered daily with valproic acid diss...

متن کامل

Why does the central nervous system not regenerate after injury?

A major problem for neuroscientists and clinicians is why the central nervous system shows ineffective regeneration after injury. Injured peripheral nerve fibers reform their connections, whereas those in injured spinal cord never re-grow. Insights into the mechanisms for repair and restoration of function after spinal cord injury have been obtained by experiments showing that injured nerve cel...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Brain : a journal of neurology

دوره 127 Pt 7  شماره 

صفحات  -

تاریخ انتشار 2004